

Chemical Modification of Reveromycin A and Its Biological Activities

Takeshi Shimizu,^{a,*} Takeo Usui,^b Kiyotaka Machida,^b Kouichi Furuya,^a Hiroyuki Osada^b and Tadashi Nakata^a

^aSynthetic Organic Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan ^bAntibiotic Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan

Received 18 April 2002; accepted 11 September 2002

Abstract—Various derivatives of reveromycin A, a novel inhibitor of eukaryotic cell growth, were prepared and their inhibitory effects on both isoleucyl-tRNA synthetase activity and in vitro protein synthesis, and activities on the morphological reversion of *src*^{ts}-NRK cells were assayed. The C5 hydroxyl group and C24 carboxyl group are particularly important for these activities. © 2002 Elsevier Science Ltd. All rights reserved.

Reveromycins A-D (1-4, Fig. 1) are novel polyketidetype antibiotics isolated from the genus Streptomyces as inhibitors of mitogenic activity induced by the epidermal growth factor (EGF) in a mouse epidermal keratinocyte. 1 An inhibitor of mitogenic activity of EGF or transforming growth factor α (TGF- α), which shares the same receptor with EGF, may be the focal point for the development of a novel range of antitumor drugs. Therefore, reveromycins are possible new antitumor drugs with a novel mechanism of action. During the course of searching for the reveromycin A (1) target protein, we found several biological activities such as the morphological reversion of src^{ts}-NRK cells from spherical transformed cells to flat cells without any noticeable cytotoxicity (EC₅₀ = 1.58 μ g/mL), the antiproliferative activity against human tumor cell lines $(IC_{50} = 1.3 - 2.0 \mu g/mL)$, antifungal activity (MIC = 2.0 μ g/mL, pH 3), and in vitro protein synthesis of rabbit reticulocytes (IC₅₀ = 40 nM).^{2,3} Recently, the molecular target of 1 was identified as isoleucyl-tRNA synthetase (IleRS) using yeast genetics and biochemical studies.⁴ The IC₅₀ on this enzyme was 1.3 ng/mL, while other aminoacyl-tRNA synthetases were not inhibited.

The characteristic structural feature of 1 includes a 1,7-dioxaspiro[5.5]undecane moiety, that is, the 6,6-spiroacetal core bearing a hemisuccinate, two unsaturated carboxylic acid side chains and two alkyl groups.^{5–7} Its strong biological activity as a potential drug and its

Chemistry

The 6,6-spiroacetal core in 1 has two long alkenyl carboxylic acid side chains at C11 and C19 which might be in close proximity to each other (Fig. 2). Although the hemisuccinate of C18 *tert*-hydroxyl group and the C19

Reveromycin A (1):
$$R^1=H$$
, $R^2=H$
Reveromycin C (2): $R^1=H$, $R^2=H$
Reveromycin D (3): $R^1=Me$, $R^2=H$
HO₂C

HO₂

Figure 1. Structures of reveromycin A (1), C (2), D (3) and B (4).

synthetically challenging molecular architecture have attracted the attention of synthetic organic chemists, and the first asymmetric total synthesis of 1 was accomplished by our group. However, the structure–activity relationships of 1 have not been systematically examined. We now report the synthesis of various derivatives of 1 and their biological activities.

^{*}Corresponding authors. Tel.: +81-48-467-9375; fax: +1-48-462-4666; e-mail: tshimizu@postman.riken.go.jp

Figure 2. Possible conformations of reveromycin A (1) and B (4).

side chain are *trans*-diaxially oriented, we anticipated that the hydrogen bond between the C5 hydroxyl group and C24 carboxyl group might contribute to the stability of **1** in addition to the anomeric double stabilization. On the other hand, the antifungal activity of **1** (pKa 4.2) was markedly enhanced when the initial pH of the medium was decreased from 7.4 to 3.0.² However, the trimethyl ester derivative **8** (Scheme 1) was not active even at pH 3. These results suggested that the nondissociative form of the carboxylic acids is necessary for the antifungal activity. Based on these mentioned facts, the chemical modifications of the C5 hydroxyl group, C18 hemisuccinate and three carboxyl groups were designed to elucidate the structure–activity relationships of **1**.

First, the C5 hydroxyl group in 1 was converted into the methoxy, acetoxy and silyloxy group to evaluate the correlation of the hydrogen bond to the C24 carboxyl group and the activity. Esterification of 1 with allyl alcohol in the presence of EDCI and DMAP at 1.5 Gpa⁹ gave the triallyl ester in 36% yield. Methylation of the ester with MeOTf followed by the selective deprotection of the three allyl groups gave the C5 methoxy derivative 5 (81%, two steps) (Scheme 1). The C5 acetate 6 was obtained via the acetylation in a similar manner. The silvlation of 1 with TBSCl followed by treatment with MeOH-THF afforded the C5 TBS ether 7 via hydrolysis of the silyl ester groups. The second task is preparation of the C24 ester derivatives. Although selective hydrolysis of the three methyl ester groups in 8 did not succeed, the esterification of 1 with 1 or 2 equivalents of TMSCHN₂¹⁰ gave the C24 ester derivatives 8, 10, 11 and 13 and the C24 carboxylic acid derivatives 9, 12 and 14.11 The catalytic hydrogenation of the ester 8 followed by deprotection of the methyl ester groups with LiSPr in HMPA¹² gave the saturated acids 15 in good yield, while the reduction of 1 afforded 15 in low yield. Next, the modification of the C18 hemisuccinyl group was carried out. The alkaline hydrolysis of 1 with LiOH gave the C18 hydroxyl derivative 16⁵ and then 16 was easily converted into the 5,6spiroacetal derivative 17 using p-TsOH.¹³ The esterification of 16 with TMSCHN₂ followed by silylation with TBSCl gave the C18 hydroxyl derivative 18. The treatment of 18 with MeI-NaH¹⁴ gave the C18 methoxy

dicarboxylic acid accompanied with hydrolysis of the ester groups, and the acid was desilylated with TBAF to afford the C18 methoxy derivative 19. The C18 hydroxyl derivative 18 having the 6,6-spiroacetal core was converted into the C19 methoxy derivative 20 having a 5,6-spiroacetal core in a similar manner. The C18 hydroxyl derivative 18 was also treated with DMSO-Ac₂O¹⁵ to afford the C18 MTM ether derivative 21. Then, 21 was partially hydrolyzed with LiOH and desilylated using TBAF to give the C18 MTM ether dicarboxylic acid 22 and monocarboxylic acid 23.

Biological Activities and Discussion

We have already reported that reveromycin A (1) showed a strong inhibitory activity for the protein synthesis of the reticulocyte lysate system and morphological reversion activity on src^{ts} -NRK cells, while reveromycin B (4) showed little morphological reversion even at the concentration of 50 μ g/mL.² It was also revealed that the molecular target of 1 was the isoleucyltRNA synthetase.⁴ Therefore, we tested these biological activities of the designed compounds and the results are shown in Table 1.

Effects on both isoleucyl-tRNA synthetase activity and in vitro protein synthesis

Reveromycin A (1) strongly inhibited the IleRS activity and the IC₅₀ on this enzyme was 1.3 ng/mL. The C5 methyl ether 5 having weak hydrogen bond weakly inhibited both the IleRS activity ($IC_{50} = 165.0 \text{ ng/mL}$) and in vitro protein synthesis, while the C5 acetate 6 and the C5 TBS ether 7 did not inhibit both the activities. The triester 8 and the diesters 9, 10 and 11 did not inhibit both the IleRS activity and in vitro protein synthesis. The C1 monoester 12 and C4' monoester 14 having the C24 carboxyl group exhibited inhibitory effects on both the IleRS activity (IC₅₀ = 92.8, 129.0 ng/ mL, respectively) and in vitro protein synthesis. On the other hand, the C24 monoester 13 weakly inhibited the IleRS activity (IC $_{50}$ =490.8 ng/mL) and did not inhibit the in vitro protein synthesis. These results revealed that two of the three carboxyl groups in 1 are essential for the activities and the free hydroxyl group at C5 and the C24 carboxyl group are particularly important to show the strong activities. The saturated acid 15 did not show both the activities even though 15 contained all of the C5 hydroxyl group and three carboxyl groups. These results may be attributed to the free conformation of both substituents, in which formation of the hydrogen bond between the C5 hydroxyl group and C24 carboxyl group is hard. The C18 hydroxyl derivative 16 and the C18 methoxy derivative **19** strongly inhibited both the IleRS activity (IC₅₀=41.7, 25.5 ng/mL, respectively) and in vitro protein synthesis. The C18 MTM ether derivative 22 also exhibited both the activities. However, the C24 ester derivative 23 of 22 did not show both the activities. It became clear that the C24 carboxyl group in 22 is essential and the C18 hemisuccinate group in 1 is important but not essential for these activities.

Scheme 1. (a) Allyl alcohol, EDCI, DMAP, CH_2Cl_2 , 1.5 GPa, rt (36%); (b) MeOTf, 2,6-di-t-butyl-4-methylpyridine, CH_2Cl_2 , 80 °C (75%); (c) $Pd(Ph_3P)_4$, Ph_3P , pyrrolidine, CH_2Cl_2 , rt (93%); (d) Ac_2O , pyridine, DMAP, rt (76%); (e) $Pd(Ph_3P)_4$, Ph_3P , pyrrolidine, CH_2Cl_2 , rt (85%); (f) TBSCl, imidazole, DMF, rt; (g) MeOH-THF, rt (71%, 2 steps); (h) TMSCHN₂, benzene-MeOH, rt; (i) H_2 , Pd/C, MeOH, rt (47%); (j) H_2 , Pd/C, EtOAc, rt; (k) LiSPr, HMPA, rt (73%, 2 steps); (l) 1N LiOH, rt (96%); (m) p-TsOH, MeOH, rt (96%); (n) TMSCHN₂, benzene-MeOH, rt; (o) TBSCl, imidazole, DMF, rt (92%, 2 steps); (p) NaH, MeI, THF, 0 °C rt; (q) TBAF, DMF, rt (36%, 2 steps); (r) p-TsOH, CH_2Cl_2 , rt; (s) NaH, MeI, THF, 0 °C rt; (t) TBAF, DMF, rt (68%, 3 steps); (u) DMSO, Cl_2O , rt; (v) 1N LiOH, THF-MeOH, rt; (w) TBAF, DMF, rt (22: 50%; 23: 16%, 3 steps).

Table 1. IC₅₀ on IleRS activity, inhibition of in vitro protein synthesis, and morphological reversion of src^{ts} -NRK cells by reveromycin derivatives 1, 4–17, 19, 20, 22 and 23

Compd	IC ₅₀ on IleRS activity (ng/mL)	Inhibition of in vitro protein synthesis (1 μg/mL)	Morphological reversion of src ^{ts} -NRK cells concentration (μg/mL)							
			100	50	20	10	5	2	1	0.1
1	1.3	+++	+ + + a	+++	+++	+ +	+	_		
4	1000 <	_	_							
5	165	+ +	_							
6	1000 <	_	+++	+ + +	+ + +	+ +	_			
7	1000 <	_	_							
8	1000 <	_	_							
9	1000	_	+++	nt ^b	nt	+ + +	+ + +	+ + +	+ + +	+
10	1000 <	_	+++	nt	nt	+ + +	+ + +	+ +	\pm	_
11	1000 <	_	+++	+ + +	+ + +	+ + +	+	_		
12	92.8	+ + +	+++	+ + +	+ + +	+ + +	+	_		
13	490.8	_	+++	+ + +	++	\pm	_			
14	129	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	\pm	
15	1000 <	_	_							
16	41.7	+ + +	_							
17	1000 <	_	_							
19	25.5	+ + +	+++	+ + +	++	++				
20	1000 <	_	_							
22	219.2	+ + +	+++	+ +	\pm	_				
23	1000 <	_	_							

aRate of reversed cells was presented as follows: + + + ;> 80%, + + ;50-80%, + ;20-50%, -; <20%.

Morphological reversion of srcts-NRK cells

Among all of the derivatives systematically prepared, the C1 monoester 12, the C4' monoester 14, the C18 methoxy derivative 19 and the C18 MTM ether 22 having the C24 carboxyl group and the C5 hydroxyl group in common also exhibited morphological reversion activities on srcts-NRK cells. However, the C18 hydroxyl derivative 16 did not show the morphological reversion. We assumed that 16 might be converted into the corresponding 5,6-spiroacetal derivative 17 in the medium or cells and lost its activity. In fact, the synthesized 5,6-spiroacetal 17 did not exhibit morphological reversion activity on src^{ts}-NRK cells and inhibitory effects on both the IleRS activity and in vitro protein synthesis. The 5,6-spiroacetal derivatives 4 and 20 also did not show any activities. It is important to note that both the unsaturated side chains in the 5,6-spiroacetal derivatives are separated and cannot form hydrogen bonds (Fig. 2). The IleRS inhibitory activity of the C5 methyl ether 5 are about 100-fold less than 1 and 5 did not show morphological reversion at the concentration of 100 μg/mL. The C5 acetate 6 and the methyl esters 9, 10, 11 and 13 induced strong morphological reversion of srcts-NRK cells, although these esters scarcely inhibited the IleRS activity. It was suggested that these esters were hydrolyzed by cellular esterase to afford 1 after being taken into the cells and showed these activities.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (14572104) to T. S. from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by the Special Project Funding for Basic Science (Multibioprobes) from RIKEN. We thank Dr.

H. Koshino for measurement of the HMBC spectrum, and Ms. K. Harata for measurement of the mass spectrum.

References and Notes

- 1. Takahashi, H.; Osada, H.; Koshino, H.; Kudo, T.; Amano, S.; Shimizu, S.; Yoshihama, M.; Isono, K. *J. Antibiot.* **1992**, *45*, 1409.
- 2. Takahashi, H.; Osada, H.; Koshino, H.; Sasaki, M.; Onose, R.; Nakakoshi, M.; Yoshihama, M.; Isono, K. J. Antibiot. 1992, 45, 1414.
- 3. Takahashi, H.; Yamashita, Y.; Takaoka, H.; Nakamura, J.; Yoshihama, M.; Osada, H. *Oncology Res.* **1997**, *9*, 7.
- 4. Miyamoto, Y.; Machida, K.; Mizunuma, M.; Emoto, Y.; Sato, N.; Miyahara, K.; Usui, T.; Osada, H.; Takahashi, H.; Hirata, D.; Miyakawa, T. *J. Biol. Chem.* **2002**, *277*, 28810.
- 5. Koshino, H.; Takahashi, H.; Osada, H.; Isono, K. J. Antibiot. 1992, 45, 1420.
- 6. Ubukata, M.; Koshino, H.; Osada, H.; Isono, K. J. Chem. Soc. Chem. Commun. 1994, 1877.
- 7. Shimizu, T.; Kobayashi, R.; Osako, K.; Nakata, T. *Tetra-hedron Lett.* **1996**, *37*, 6755.
- 8. Shimizu, T.; Masuda, T.; Hiramoto, K.; Nakata, T. Org. Lett. 2000, 2, 2153.
- 9. Esterification of 1 with allyl alcohol in the presence of DCC and DMAP at 1.5 GPa for two days⁸ gave the triallyl ester in only 13% yield.
- 10. Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981, 29, 1475.
- 11. The structures of the esters 9–14 were determined by comparison of the NMR spectra with that of the triester 8, including HMBC spectra.
- 12. Bartlett, P. A.; Johnson, W. S. *Tetrahedron Lett.* **4459**, *1970*. 13. The dimethyl ester derived from **17** with TMSCHN₂ was identical with the dimethyl ester⁵ obtained from natural reveromycin B **(2)**.
- 14. Jung, M. E.; Kaas, S. M. Tetrahedron Lett. 1989, 30, 641. 15. Yamada, K.; Kato, K.; Nagasa, H.; Hirata, Y. Tetrahedron Lett. 1976, 65.

^bNot tested.